

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 8595-8598

Ytterbium triflate-assisted catalytic oxidative cross-coupling of 2-naphthol derivatives

Shigeki Habaue,* Tomohisa Temma, Yukihiro Sugiyama and Pei Yan

Department of Chemistry and Chemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan

> Received 12 September 2007; revised 9 October 2007; accepted 12 October 2007 Available online 14 October 2007

Abstract—The oxidative coupling of 2-naphthol and 3-hydroxy-2-naphthoate derivatives with a copper catalyst under an O_2 atmosphere was carried out. The reaction in the presence of a catalytic amount of the Lewis acid, Yb(OTf)₃, proceeded in a cross-coupling specific manner.

© 2007 Elsevier Ltd. All rights reserved.

The precise control of radical reactions has been an attractive topic in the fields of synthetic organic and polymer chemistry over the past decade. A Lewis acid catalyst is often used as a powerful tool for controlling their selectivities, etc.^{1,2} For instance, during the radical polymerization of acrylamides and methacrylamides, a catalytic amount of the Lewis acid, such as the trifluoro-methanesulfonate salts of ytterbium and yttrium [Yb(OTf)₃ and Y(OTf)₃], significantly increased the isotacticity of the obtained polymer, and this method was further combined with one of the living radical polymerization chain transfer polymerization, to afford a polymer with the simultaneously controlled molecular weight and tacticity.³

The oxidative coupling of 2-naphthol derivatives is a facile and effective preparation route to the 1,1'-bi-2naphthol (BINOL). We recently reported the oxidative cross-coupling between 2-naphthol and 3-hydroxy-2naphthoate derivatives using the CuCl-2,2'-isopropylidenebis(4-phenyl-2-oxazoline) [CuCl-Phbox] catalyst (Fig. 1), in which the unsymmetrical BINOL (Y) was selectively produced (Scheme 1).⁴⁻⁶ However, the cross-coupling and stereoselectivities were significantly affected by the substrate structure, as well as the catalyst, and have not still been sufficiently controlled.

The oxidative coupling process involves a radical coupling step.^{7,8} Therefore, the reaction between the 2-naphthol and 3-hydroxy-2-naphthoate derivatives with copper catalysts in the presence of a Lewis acid was examined, and it was found that the cross-coupling specific reaction proceeds when a catalytic amount of Yb(OTf)₃ is used. The Lewis acid effect on the oxidative coupling of the 2-naphthol derivatives has been scarcely reported to the best of our knowledge.

The oxidative coupling reaction of a 1:1 mixture of 2naphthol (1a) and methyl 3-hydroxy-2-naphthoate (2a) with the CuCl(OH)-TMEDA catalyst (Fig. 1) in THF at room temperature under an O_2 atmosphere in the absence and presence of Yb(OTf)₃ was carried out⁹ and the results are listed in Table 1. The reaction without the Lewis acid gave a cross-coupling product in a low yield with a cross-coupling selectivity (Y-selectivity) of 88% (entry 1). In contrast, a catalytic amount of

Keywords: Binaphthol; Cross-coupling; Lewis acid; Oxidative coupling.

^{*} Corresponding author. Tel./fax: +81 238 26 3116; e-mail: habaue@ yz.yamagata-u.ac.jp

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.10.064

Scheme 1.

Table 1. Oxidative cross-coupling of 1a and 2a

	Harry OH 1a (1 equiv.)	OH C CO ₂ Me -	uCl(OH)-TMEDA Yb(OTf) ₃ THF, O ₂ , r.t.	HO OH CO ₂ Me	
Entry	CuCl(OH)-TMEDA (equiv)	Yb(OTf) ₃ (equiv)	Time (h)	Y-selectivity ^a (%)	Yield ^b (%)
1	0.2	_	48	88 ^c	47
2	0.2	0.2	36	>99	91
3	0.1	0.2	48	>99	78
4	0.2	0.1	48	>99	91
5	0.1	0.1	24	98 ^d	81
6 ^e	0.1	0.1	62	79 ^f	22
7	—	0.2	48	_	0

^a Cross-coupling selectivity.

^b Isolated yield of cross-coupling product Y.

 c X:Y:Z = 12:88:0.

 d X:Y:Z = 2:98:0.

^e Solvent = CH_2Cl_2 .

 f X:Y:Z = 21:79:0.

Yb(OTf)₃ in THF significantly increased both the yield and Y-selectivity, and the reaction proceeded in a cross-coupling specific manner (entries 2–5). The solvent also influenced on the yield and Y-selectivity (entry 6). The reaction without the copper catalyst did not give any coupling product (entry 7). Accordingly, the Lewis acid effectively promotes the oxidative cross-coupling reaction when using the copper catalyst.

The asymmetric oxidative cross-coupling reaction of various 2-naphthol derivatives with the CuCl-Phbox catalyst was examined (Table 2). The cross-coupling specific reaction again proceeded when a catalytic amount of Yb(OTf)₃ was used as the co-catalyst. The cross-coupling product obtained by the reaction between **1a** and **2a** hardly showed an ee value (entry 1), whereas the reaction of the substrate having a phenyl ester **2b** resulted in a higher stereoselectivity than that observed for the reaction in the absence of the Lewis acid. For example, the reaction between 3-benzyloxy-2-naphthol (1b) and 2b at 0 °C afforded a product with a Y-selectivity of >99% and 88% ee (entry 6). The Lewis acid catalyst significantly improves the stereoselectivity, as well as the cross-coupling value. $Y(OTf)_3$ was also effective as an additive and showed a catalyst effect almost equal to that of $Yb(OTf)_3$ (entry 3). Although the reaction in the presence of Sc(OTf)₃ also proceeded

in a cross-coupling specific manner, the system did not work as a catalytic process (entry 2).

A plausible mechanism for the catalytic oxidative crosscoupling reaction has been suggested in previous reports.⁴ During the reaction, the β -naphthol with electron-withdrawing group works as an acceptor for the radical species generated by the one-electron oxidation of the other substrate, 2-naphthol. The Lewis acid catalyst, such as Yb(OTf)₃ and Y(OTf)₃, should effectively activate the former acceptor substrate as shown in Figure 2, in which the structure of the ester group can also significantly affect the coupling stereochemistry.

In conclusion, a novel catalyst system for the oxidative coupling reaction of 2-naphthol derivatives, the binary catalyst of the copper complex and lanthanide triflate, simultaneously controls both cross-coupling and stereoselectivities. Further investigation and extension of this system are now in progress.

Acknowledgement

This work was partially supported by Grants-in-Aid for Scientific Research (No. 18039003) from the Ministry of Education, Science, Sports, and Culture of Japan.

Table 2. Asymmetric oxidative cross-coupling of 1 and 2

>99 (97)

>99 (97)

2h ^a Cross-coupling selectivity. In parentheses, values for the reaction without Lewis acid are given.^{4a,b}

2b

^b Isolated yield of cross-coupling product.

^c Determined by HPLC (Chiralpak AD-H or AS-H). In parentheses, values for the reaction without Lewis acid are given.^{4a,b}

^d(*R*)Phbox and Yb(OTf)₃ (0.2 equiv) were used.

^e Sc(OTf)₃ (0.2 equiv) as a Lewis acid was used.

1c

1d

^fY(OTf)₃ (0.2 equiv) was used.

 g X:Y:Z = 3:97:0.

 2^{e}

4

5

6¹

7ⁱ

8

^h(R)Phbox was used (temp. = $0 \circ C$, time = 168 h).

ⁱ(R)Phbox was used.

Figure 2. Plausible mechanism.

References and notes

- 1. Yamamoto, Y.; Onuki, S.; Yumoto, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 421-422.
- 2. (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163-171; (b) Sibi, M. P.; Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263-3295; (c) Srikanth, G. S. C.; Castle, S. L. Tetrahedron 2005, 61, 10377-10441; (d) Zimmerman, J.; Sibi, M. P. Top. Curr. Chem. 2006, 263, 107-162.
- 3. (a) Mero, C. L.; Porter, N. A. J. Org. Chem. 2000, 65, 775-781; (b) Baraki, H.; Habaue, S.; Okamoto, Y. Macromolecules 2001, 34, 4724-4729; (c) Isobe, Y.; Fujioka, D.; Habaue, S.; Okamoto, Y. J. Am. Chem. Soc. 2001, 123, 7180-7181; (d) Ray, B.; Isobe, Y.; Morioka, K.; Habaue, S.; Okamoto, Y.; Kamigaito, M.; Sawamoto, M. Macromolecules 2003, 36, 543-545.
- 4. (a) Temma, T.; Habaue, S. Tetrahedron Lett. 2005, 46, 5655-5657; (b) Temma, T.; Hatano, B.; Habaue, S. Tetrahedron 2006, 62, 8559-8563; (c) Habaue, S.; Takahashi, Y.; Temma, T. Tetrahedron Lett. 2007, 48, 7301-7304.

99

85

- 5. The cross-coupling reaction with an excess amount of copper complex, see: (a) Hovorka, M.; Ščigel, R.; Gunrerová, J.; Tichý, M.; Závada, J. Tetrahedron 1992, 48, 9503-9516; (b) Hovorka, M.; Závada, J. Tetrahedron 1992, 48, 9517-9530; (c) Smrčina, M.; Vyskočil, Š.; Máca, B.; Polákova, J.; Claxton, T. A.; Abbott, A. P.; Kočovský, P. J. Org. Chem. 1994, 59, 2156-2163.
- 6. The preliminary data on the catalytic cross-coupling are available: (a) Smrčina, M.; Polákova, J.; Vyskočil, Š.; Kočovský, P. J. Org. Chem. 1993, 58, 4534-4538; (b) Hon, S.-W.; Li, C.-H.; Kuo, J.-H.; Barhate, N. B.; Liu, Y.-H.;

45, S(3)

55, R (46)

Wang, Y.; Chen, C.-T. Org. Lett. 2001, 3, 869–872; (c) Caselli, A.; Giovenzana, G. B.; Palmisamo, G.; Sisti, M.; Pilati, T. Tetrahedron: Asymmetry 2003, 14, 1451–1454.

- 7. Brunel, J. M. Chem. Rev. 2005, 105, 857-897.
- (a) Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.; Noji, M.; Koga, K. J. Org. Chem. 1999, 64, 2264– 2271; (b) Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137–1140; (c) Gao, J.; Reibenspies, J. H.; Martell, A. E. Angew. Chem., Int. Ed. 2003, 42, 6008– 6012.
- 9. Typical procedure for the catalytic cross-coupling reaction in the presence of Yb(OTf)₃: To a THF solution of **1**, **2**, and Yb(OTf)₃ (Aldrich), a mixture of CuCl(OH)-TMEDA (TCI) and THF was added. The reaction mixture $([1]_0 = 0.17 \text{ M})$ was then stirred at room temperature under an O₂ atmosphere, diluted with CHCl₃, and washed with 1 N HCl and brine. The organic layer was dried over MgSO₄. After filtration and concentration to obtain the crude products, the cross-coupling compound was isolated by silica gel column chromatography.